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Matrix Completion

Goal: given i. Ω, a set of known entries of an m × n
matrixX and ii. its rank r, fill-in the remaining entries:

min
X∈Rm×n

1

2
‖PΩ (X −M ) ‖2F

subject to: rank(X) ≤ r

[PΩ(X)]ij =

{
Xij (i, j) ∈ Ω,

0 (i, j) /∈ Ω.

Applications

Recommender Systems [1]

Image Inpainting [2]

Device Localization [3]

Challenge: The matrix can be

high-dimensional

Node 1 2 3 4 5
1 0 31 ? ? ?

2 31 0 27 45 ?

3 ? 27 0 23 26

4 ? 45 23 0 29

5 ? ? 26 29 0

Randomized Coordinate Descent (RCD)
for Matrix Completion

Unconstrained reformulation:

min
A∈Rm×r,B∈Rn×r

1

2
‖PΩ

(
ABT −M

)
‖2F

Algorithm [11] O(|Ω|r):
1. Minimize with respect to a coordinate of

A(k) or ofB(k)

2. After (n +m)r repetitions of 1., refactor

A(k)B(k)T = X (k)

Refactor as

A(k) = U (k)
√
Σ(k), B(k) = V (k)

√
Σ(k)

where the SVD ofX (k) is

U (k)Σ(k)V (k)T

RCD Error Analysis [11]

The expected value of the projected error δ(k) =

(ZTSSTZ)1/2ZT (vec(A(k)B(k)T −M )) follows:

E[δ(k+1)] = E
[
I − q∗(q∗)T

(q∗)Tq∗

]
︸ ︷︷ ︸

T

E[δ(k)] + o(‖δ(k)‖2)

q∗ =

{√
σj(Z

TSSTZ)1/2ZT (vj ⊗ e
(m)
i ) forA

(k)
ij ,√

σj(Z
TSSTZ)1/2ZT (e

(n)
i ⊗ uj) forB

(k)
ij

Key result:

Linear convergence rate ρ(T ) when ρ(T ) < 1

Goal: Develop efficient tuning-free accelerated RCD

RCD Error Analysis Experiments
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Comparison of asymptotic rate (dashed) to empirical rate (solid)

on 120× 100 matrices

Polyak’s MomentumAcceleration

Fixed point iteration:

xk+1 = f (xk), for k = 0, 1, 2, . . . ,

Error:

εk+1 = Tεk + q(εk), ‖q(ε)‖ ≤ q‖ε‖2

Convergence rate:

ρ = ρ(T )

Accelerated fixed point:

xk+1 = f (xk) + β(xk − xk−1).

Accelerated error:[
εk+1
εk

]
= H(β)

[
εk
εk−1

]
+

[
q(εk)
q(εk−1)

]
H(β) =

[
T + βI −βI

I 0

]
Convergence rate with optimal β∗:

ρ = 1−
√

1− ρ(T )

MomentumAccelerated RCD

1. Initialize A0, B0

2. Set A1 = A0, B1 = B0

3. for k = 1, 2, . . .
1. Generate (Ãk, B̃k) from iterated RCD:

(Ãk, B̃k) = RCD(RCD(. . .RCD(Ak,Bk)))︸ ︷︷ ︸
t nested functions

O(t|Ω|r)

2. Update the factors as follows:

Ak+1 = Ãk + β(Ak −Ak−1) O(mr),

Bk+1 = B̃k + β(Bk −Bk−1) O(nr).

Modified Refactorization

RCD applies refactorization for

unique solution

(Â, B̂) = Refactor(A,B)

Requirement:

Maintain sign consistency

Solution: Pick direction vector s and ensure

alignment of A on same side of s hyperplane

Ã = Âdiag(sign(ÂTs))

B̃ = B̂diag(sign(ÂTs))

Analysis and Stepsize Selection

Unaccelerated t-epoch convergence rate:

ρt = λmax(I −Q)(n+m)rt

Optimal momentum selection:

β∗ = (1−
√
1− ρt)

2

Improved convergence results:

‖E[AkB
T
k −M ]‖F ≤ C(1−

√
1− ρt)

k

Per-epoch computation complexity remains

O(|Ω|r)

Results

0 50 100 150 200

iterations

10
-25

10
-20

10
-15

10
-10

10
-5

 =0

 =0

= 
*

 = 0.8 
*

=1.2
*

=
*

=0.8
*

=1.2
*

Twice objective value vs. epochs for accelerated randomized

coordinate descent with various values of momentum

parameter. Number of epochs per acceleration step is t = 51.
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RCD

Alternating Minimization

Accelerated RCD, t=51

Accelerated RCD, t=5

Squared Frobenius error of mean distance for an 80× 80 matrix

vs. flops for different algorithms. The algorithms shown are

the unaccelerated RCD (∗), optimally accelerated RCD (+ and

O), and alternating minimization (◦).

Conclusion

Polyak’s momentum acceleration to RCD provides

an efficient method

Epoch-level acceleration preserves RCD

complexity

Tight analysis of unaccelerated RCD allows for

optimal hyper-parameter selection

mailto:callamat@oregonstate.edu

	Algorithm

