On Momentum Acceleration for Randomized Coordinate

UMBC

Matthew Callahan¹, Trung Vu², and Raviv Raich¹

Descent in Matrix Completion

School of EECS, Oregon State University, Corvallis, OR 97331-5501, USA
 Department of CSEE, University of Maryland, Baltimore County, MD 21250-0002, USA callamat@orgonstate.edu

Matrix Completion

Goal: given i. Ω , a set of known entries of an $m \times n$ matrix \boldsymbol{X} and ii. its rank r, fill-in the remaining entries:

Applications

- Recommender Systems [1]
- Image Inpainting [2]
- Device Localization [3]
- Challenge: The matrix can be high-dimensional

Randomized Coordinate Descent (RCD) for Matrix Completion

• Unconstrained reformulation:

$$\min_{\boldsymbol{A} \in \mathbb{R}^{m \times r}, \boldsymbol{B} \in \mathbb{R}^{n \times r}} \frac{1}{2} \| \mathcal{P}_{\Omega} \left(\boldsymbol{A} \boldsymbol{B}^{T} - \boldsymbol{M} \right) \|_{F}^{2}$$

- Algorithm [11] $\mathcal{O}(|\Omega|r)$:
- 1. Minimize with respect to a coordinate of $\boldsymbol{A}^{(k)}$ or of $\boldsymbol{B}^{(k)}$
- 2. After (n+m)r repetitions of 1., refactor $\boldsymbol{A}^{(k)}\boldsymbol{B}^{(k)T}=\boldsymbol{X}^{(k)}$

Refactor as

$$m{A}^{(k)} = m{U}^{(k)} \sqrt{m{\Sigma}^{(k)}}, \qquad m{B}^{(k)} = m{V}^{(k)} \sqrt{m{\Sigma}^{(k)}}$$
 where the SVD of $m{X}^{(k)}$ is $m{U}^{(k)} m{\Sigma}^{(k)} m{V}^{(k)}^T$

RCD Error Analysis [11]

The expected value of the projected error $\boldsymbol{\delta}^{(k)} = (\boldsymbol{Z}^T \boldsymbol{S} \boldsymbol{S}^T \boldsymbol{Z})^{1/2} \boldsymbol{Z}^T (\text{vec}(\boldsymbol{A}^{(k)} \boldsymbol{B}^{(k)^T} - \boldsymbol{M}))$ follows:

$$\mathbb{E}[\boldsymbol{\delta}^{(k+1)}] = \mathbb{E}\left[\boldsymbol{I} - \frac{\boldsymbol{q}^*(\boldsymbol{q}^*)^T}{(\boldsymbol{q}^*)^T\boldsymbol{q}^*}\right] \mathbb{E}[\boldsymbol{\delta}^{(k)}] + o(\|\boldsymbol{\delta}^{(k)}\|^2)$$

$$oldsymbol{q}^* = egin{cases} \sqrt{\sigma_j} (oldsymbol{Z}^T oldsymbol{S} oldsymbol{S}^T oldsymbol{Z})^{1/2} oldsymbol{Z}^T (oldsymbol{v}_j \otimes oldsymbol{e}_i^{(m)}) & ext{for } oldsymbol{A}_{ij}^{(k)}, \ \sqrt{\sigma_j} (oldsymbol{Z}^T oldsymbol{S} oldsymbol{S}^T oldsymbol{Z})^{1/2} oldsymbol{Z}^T (oldsymbol{e}_i^{(n)} \otimes oldsymbol{u}_j) & ext{for } oldsymbol{B}_{ij}^{(k)}, \end{cases}$$

Key result:

Linear convergence rate $\rho(\boldsymbol{T})$ when $\rho(\boldsymbol{T}) < 1$

Goal: Develop efficient tuning-free accelerated RCD

RCD Error Analysis Experiments

Comparison of asymptotic rate (dashed) to empirical rate (solid) on 120×100 matrices

Polyak's Momentum Acceleration

Fixed point iteration:

$${\bm x}_{k+1} = {\bm f}({\bm x}_k), \quad \text{for} \quad k = 0, 1, 2, \dots,$$

Error:

$$\epsilon_{k+1} = T\epsilon_k + q(\epsilon_k), \quad ||q(\epsilon)|| \le q||\epsilon||^2$$

Convergence rate:

$$ho =
ho(m{T})$$

Accelerated fixed point:

$$\mathbf{x}_{k+1} = \mathbf{f}(\mathbf{x}_k) + \beta(\mathbf{x}_k - \mathbf{x}_{k-1}).$$

Accelerated error:

$$egin{aligned} egin{aligned} oldsymbol{\epsilon}_{k+1} \ oldsymbol{\epsilon}_{k} \end{aligned} &= oldsymbol{H}(eta) egin{bmatrix} oldsymbol{\epsilon}_{k} \ oldsymbol{\epsilon}_{k-1} \end{aligned} + egin{bmatrix} oldsymbol{q}(oldsymbol{\epsilon}_{k}) \ oldsymbol{q}(oldsymbol{\epsilon}_{k-1}) \end{bmatrix} \ oldsymbol{H}(eta) &= egin{bmatrix} oldsymbol{T} + eta oldsymbol{I} - eta oldsymbol{I} \\ oldsymbol{I} & oldsymbol{0} \end{aligned}$$

Convergence rate with optimal β^* :

$$\rho = 1 - \sqrt{1 - \rho(\boldsymbol{T})}$$

Momentum Accelerated RCD

- 1. Initialize \boldsymbol{A}_0 , \boldsymbol{B}_0
- 2. Set $A_1 = A_0$, $B_1 = B_0$
- 3. for k = 1, 2, ...
 - 1. Generate $(\mathbf{A}_k, \mathbf{B}_k)$ from iterated RCD:

$$(\tilde{\boldsymbol{A}}_k, \tilde{\boldsymbol{B}}_k) = \underbrace{\mathsf{RCD}(\mathsf{RCD}(\dots \mathsf{RCD}(\boldsymbol{A}_k, \boldsymbol{B}_k)))}_{t \text{ nested functions}} \quad \mathcal{O}(t|\Omega|r)$$

2. Update the factors as follows:

$$oldsymbol{A}_{k+1} = \tilde{oldsymbol{A}}_k + eta(oldsymbol{A}_k - oldsymbol{A}_{k-1}) \quad \mathcal{O}(mr), \ oldsymbol{B}_{k+1} = \tilde{oldsymbol{B}}_k + eta(oldsymbol{B}_k - oldsymbol{B}_{k-1}) \quad \mathcal{O}(nr).$$

Modified Refactorization

 RCD applies refactorization for unique solution

 $(\hat{\boldsymbol{A}},\hat{\boldsymbol{B}})=\mathsf{Refactor}(\boldsymbol{A},\boldsymbol{B})$

Requirement:Maintain sign consistency

• Solution: Pick direction vector \boldsymbol{s} and ensure alignment of A on same side of \boldsymbol{s} hyperplane

 $\tilde{\boldsymbol{A}} = \hat{\boldsymbol{A}} \operatorname{diag}(\operatorname{sign}(\hat{A}^T \boldsymbol{s}))$

 $\hat{\boldsymbol{B}} = \hat{\boldsymbol{B}}$ diag(sign $(\hat{A}^T \boldsymbol{s})$)

Analysis and Stepsize Selection

• Unaccelerated t-epoch convergence rate:

$$ho_t = \lambda_{max} (oldsymbol{I} - oldsymbol{Q})^{(n+m)rt}$$

Optimal momentum selection:

$$\beta^* = (1 - \sqrt{1 - \rho_t})^2$$

Improved convergence results:

$$\|\mathbb{E}[\boldsymbol{A}_k \boldsymbol{B}_k^T - \boldsymbol{M}]\|_F \le C(1 - \sqrt{1 - \rho_t})^k$$

Per-epoch computation complexity remains $\mathcal{O}(|\Omega|r)$

Results

Twice objective value vs. epochs for accelerated randomized coordinate descent with various values of momentum parameter. Number of epochs per acceleration step is t=51.

Squared Frobenius error of mean distance for an 80×80 matrix vs. flops for different algorithms. The algorithms shown are the unaccelerated RCD (*), optimally accelerated RCD (+ and ∇), and alternating minimization (o).

Conclusion

- Polyak's momentum acceleration to RCD provides an efficient method
- Epoch-level acceleration preserves RCD complexity
- Tight analysis of unaccelerated RCD allows for optimal hyper-parameter selection